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ALIAS-FREE SMOOTHED WIGNER DISTRIBUTION

FUNCTION FOR DISCRETE-TIME SAMPLES

INTRODUCTION

The utility of the Wigner distribution function (WDF) for

detailed time-frequency analysis of waveforms has been summarized

very well in a recent article by Cohen [1]; this material will be

assumed to be known by the reader. As for actual numerical

calculation, the problem of obtaining an alias-free WDF and

complex ambiguity function (CAF), from discrete-time samples, was

solved in a recent report by Nuttall [2]. Specifically, an upper

bound on the time sampling increment and a lower bound on the

fast Fourier transform (FFT) size were determined that allowed

for evaluation of the original continuous WDF and CAF at a

discrete set of points with sufficient detail and coverage to

avoid any significant loss of information. Furthermore, a

detailed prescription for the required data processing of the

available discrete-time samples, in terms of FFTs, was given.

However, the presence of large oscillating interference

terms, which are inherent to the WDF, requires that some smoothed

version of the WDF be made available from discrete data. This

problem was addressed recently by Harms [3], and a procedure was

delineated for its realization in terms of FFTs. However, the

additional data processing required for the smoothed WDF cannot

be realized without some extra effort or penalty; in fact, new

more stringent bounds on the sampling increment and FFT sizes
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must be met in order to retain the alias-free character of the

resultant smoothed WDF. These bounds were derived by Nuttall and

furnished to Harms who listed them in [3; section 4 (see his

reference 11)].

In this current report, we will present the detailed

derivations that lead to these bounds. In the process,

interpretations of the smoothed temporal correlation function

(TCF) and smoothed spectral correlation function (SCF) are

required and furnished. Allowance for a very general form of

ambiguity weighting (multiplication) or Wigner smoothing

(convolution), including tilts in the appropriate time-frequency

planes, is made and accounted for. The specific data processing

and FFT operations are presented in complete detail.

2
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CONTINUOUS TIME-FREQUENCY REPRESENTATIONS

In this section, waveform s(t) is considered to be available

for continuous time t. We will point out some basic properties

of the various time-frequency representations (TFRs) of the

waveform, which will be required later when we address the

discrete-time case; some of this material was given in

[2; especially appendix A].

WAVEFORM CHARACTERISTICS

Complex waveform s(t) has voltage density spectrum

S(f) = { dt exp(-i2nft) s(t) , (1)

where f is cyclic frequency and integrals without limits are

conducted over the range of nonzero integrand. It will be

presumed that the waveform is essentially time limited and

frequency limited; that is,

Is(t)I - 0 for Itl > T/2 (2)

and

IS(f)I = 0 for Ifi > F/2 . (3)

Thus, the total time extent of s(t) is T seconds while the total

frequency extent of S(f) is F Hertz. The effective extent of

s(t), say where Is(t)I is within l/e of its peak, is smaller than

T; similarly, the effective extent of S(f) is smaller than F.

3
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This distinction between the essential (total) extent and the

effective extent is kept below. The time-bandwidth product TF

must be larger than 1 and can be much larger than 1 for some

waveforms with detailed amplitude- and/or frequency-modulation.

The fact that s(t) is centered at t = 0 results in no loss of

generality because we can delay or advance a given waveform to

this location. Similarly, a centered spectrum S(f) is easily

achieved by frequency shifting. We allow for complex s c),

thereby accommodating analytic or complex envelope waveforms.

TIME-FREQUENCY REPRESENTATIONS

The temporal correlation function (TCF) of s(t) is defined as

R(t,r) = s(t+ r) s (t- r) . (4)

Reference to (2) immediately reveals that R(t,r) is essentially

confined to Itl < T/2, Irl < T. The quantity r is the time delay

or separation variable.

The spectral correlation function (SCF) is the uouble Fourier

transform of R(t,r) and is given by

= JJ dt dr exp(-i2avt-i2fr) R(t,t) -

= S(f+ ' ) S*(f- ) (5)

Use of (3) then demonstrates that f(v,f) is essentially limited

to Ivj < F, 1fj < F/2. The quantity v is the frequency shift or

separation variable.

4
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The Wigner distribution function (WDF) is then given by

either of the following transforms

W(t,f) = I dT exp(-i2nfr) R(t,T) = (6a)

f dv exp(+i2vt) §(v,f) . (6b)

From (6a), we can conclude that W(t,f) is confined to Itl < T/2,

while from (6b), the frequency extent is essentially Ifi < F/2.

Finally, the complex ambiguity function (CAF) is available

from either of the following transforms

X(v,r) = f dt exp(-i2tvt) R(t,t) = (7a)

I df exp(+i2nfr) f(v,f) . (7b)

Therefore, the region of essential contribution of X(v,t) is

lvi < F, Irl < T, from (7b) and (7a), re? )ectively.

The extents of all four of these two-dimensional time-

frequency representations are summarized in figure 1. In fact,

for Gaussian waveform s(t) = a exp(- t 2/a 2), the choices T = 4a

and F = 2/(na), for example, give these exact results in figure

1, at the exp(-4) = .018 level. Horizontal movement in this

figure is accomplished by means of a Fourier transform between

variables t and v; vertical movement utilizes a Fourier transform

relationship between T and f. Relations (6) and (7), along with

their inverse Fourier transforms, constitute the totality of

these one-dimensional transforms.

5
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TCF T CAF T

-T/2 T/2 F

T -T

f f

WDF SCF
W (t, f) § (V,f)

F/2 F/2

-T/2 T/2 -F _/ F

Figure 1. Extents of the Time-Frequency Representations

6
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GENERALIZED TIME-FREQUENCY REPRESENTATIONS

Since there are four two-dimensional domains of interest in

the TFRs depicted in figure 1, it is necessary to consider the

effects of weighting and smoothing in all of them.

TWO-DIMENSIONAL SMOOTHING OPERATIONS

Consider v,t weighting (or kernel) (vt) applied

multiplicatively to CAF X(v,T) to yield modified (weighted) CAF

X(V,T) = x(Vt) ' (v,r) . (8)

The three equivalent descriptors to weighting Q(vt), in the

remaining domains, are given by Fourier transform relations

Vvf) - dr exp(-i2nfr) v(V,T) , (9)

v(t,t) = { dv exp(+i2nvt) ;(v,T) , (10)

V(t,f) = f dr exp(-i2afr) v(t,T) =

= f dv exp(+i2nvt) V(v,f) =

If dv dt exp(+i2nvt-i2nfr) (V,T) . (1)

The last function, V(t,f) in (11), will be called the smoothing

function, for reasons to be seen below. The notational

convention adopted here is that a Fourier transform from t to v

is indicated by a tilda, while a Fourier transform from r to f is

indicated by a capital.

7
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GAUSSIAN EXAMPLE

Probably the simplest example of a unimodal two-dimensional

smoothing operation in all four domains is furnished by the

following Gaussian example, where B and D are arbitrary:

= exp(-nv 2 /B 2-r 2/D 2 ) , (12)

V(v,f) = D exp(-nv 2 /B -D 2f 2 ) , (13)

v(t,r) = B exp(-B 2t 2-u2 /D 2 ) , (14)

V(t,f) = BD exp(-B 2t 2-D 2f 2 ) . (15)

The effective areas of these four two-dimensional functions, at

the 1/e contour level relative to each peak, are BD, B/D, D/B,

and 1/(BD), respectively. It is seen from (12) that B and D are

the essential (positive) extents of weighting @(v,r) in the v and

r directions, respectively. That is, ,(B,0) = (O,D) = exp(-n)

= .043 << 1 = i,(0,O). Similarly, from (15), 1/B and 1/D are the

essential (positive) extents of smoothing function V(t,f) in the

t and f dimensions, respectively. These properties are

illustrated in figure 2, where each contour depicte~d is at level

exp(-a) = .043, relative to its peak. Shortly, we will

generalize this smoothing function example to allow for tilts in

the v,r and t,f planes, thereby enabling better smoothing

capability to be applied to the WDF, without loss of significant

information.

8
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Tt

D weighting D exp(-n)
v(t,t) ~(V,t T *0 43

-1/B 1B t-B 
B N

-D -D

f f

Smoothing Vvf
V(t,f) VVf

1/D exp(-i) 1 D
= 043

t

-1/B 1/B -B B

-l/D -

Figure 2. Two-Dimensional Smoothing Functions

9
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MODIFIED TIME-FREQUENCY REPRESENTATIONS

The effects of each of the general smoothing functions in

(8) - (11) on the four two-dimensional TFRs (4) - (7) of the

previous section are now investigated; see also [4; appendix F].

The resultant generalized time-frequency representations (GTFRs)

are indicated on the left-hand sides by bold type:

X(V,t) X(Vr) v(v,t) , (16)

f
f(V,f) f dr exp(-i2afr) X(v,r) = 4(v,f) B V(v,f) , (17)

t
R(t,r) J dv exp(+i2nrt) X(v,t) = R(t,r) B v(t,r) , (18)

tf
W(t,f) j dr exp(-i2afr) R(t,r) = W(t,f) B V(t,f) (19)

x

Here, B denotes convolution on x, with all other variables held

fixed; thus, for example, (17) is fdf' 1(v,f-f') V(v,f').

The interpretations of (16) - (19) are as follows: the CAF is

simply multiplied by weighting (vt); the SCF is smeared in

frequency f according to V(v,f); the TCF is smeared in time t

according to v(t,r); and the WDF is smeared in both t and f

according to smoothing function V(t,f). It is this latter

two-dimensional smoothing (convolution) operation in t,f space

that suppresses or eliminates the undesired oscillating

components that are present in the original WDF, at the expense,

of course, of spreading out localized energy components of the

waveform.

10
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The extents of the GTFRs are sketched in figure 3; these

results are based upon (16) - (19), in combination with figures 1

and 2. Because X(v,t) is the result of multiplication (16), its

extents in V,T are the minima of the two contributing functions.

On the other hand, the f extent of #(v,f) is increased by l/D,

which is the positive extent of V(v,f) in f. Similarly, the t

extent of R(t,T) is lengthened by 1/B, owing to the smoothing

action of v(t,T). In both of these latter cases, the length of

the untransformed variable (v for 0(v,f) and T for R(t,T)) is

unchanged. Finally, W(t,f) is lengthened by 1/B and 1/D in the

t and f dimensions, respectively, owing to the double convolution

with smoothing function V(t,f).

Since the smoothing function V(t,f) in figure 2 has

essentially reached zero by the time Itl = 1/B and IfI = I/D, the

effective extents in t and f are approximately Itl < 1/(2B) and

Ifi < 1/(2D). That is, V(t,f) is approximately I/B by 1/D wide

in the t,f plane, for an effective area of 1/(BD); see the line

under (15). If this area 1/(BD) is .5 or greater, then we can

expect that smoothed WDF W(t,f) will be everywhere positive

[4; (F-7) - (F-19)].

On the other hand, if effective area 1/(BD) is significantly

less than .5, then smoothing function V(t,f) is rather impulsive-

like and little averaging will occur as a result of double

convolution (19). Thus, it appears that BD, at least for the

simple Gaussian example in (12) - (15) and figure 2, should be

chosen of the order of 3 to 4. Then, the effective area of

weighting ;(v,T) in (12) and figure 2 is BD, which is of the

11
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minIT,D1 iITD

tV

T 1 mnFB

R~t~r)2 

B 

mn

R~t(V) =

t

f f

F 1F 1

2 D 2 D

t v

T 1ifFB

2 B

W(t,f) =(~f

tf f

Figure 3. Generalized Time-Frequency Representations
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order of 3 to 4. This area is significantly smaller than the

effective extent of CAF X(v,t) in figure 1, which covers an area

of the order of FT, which is generally much larger than 1.

Therefore, we can anticipate significant modifications in the

weighted CAF X(v,r), and, hence, in the smoothed WDF W(t,f), in

the majority of the t,f plane. Except to say that we expect that

B < F and D < T, there is little quantitative connection between

these parameters, in general.

TILTED GAUSSIAN EXAMPLE

When waveform s(t) contains some linear frequency modulation,

the simple Gaussian smoothing functions in (12) - (15) and figure

2 are inadequate. The CAF and WDF of s(t) have contours in their

respective planes that are similar to tilted ellipses; see, for

example, [4; pages 35 - 39]. It is then necessary to realize a

weighting function i(v,r) and a smoothing function V(t,f), which

also have the capability of moving their contours to

approximately match those of typical CAFs and WDFs.

A very useful set of smoothing functions is furnished

by the tilted Gaussian mountain, with B and D arbitrary

[4; appendices F and D]:

(v,T) = expf-[ + 2 + 2r , (20)

V(v,f) = D exp [n-i- ) + D2 f 2 - i2r Df , (21)

13
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v(t,r) = B exp[-n B2t2 + (-r 2) + i2r Bt , (22)

V(tf) B exp I R2 B2 t 2 + D2f2 + 2r Bt Df)• (23)V~t(f)r= 1l-

For r = 0, these reduce to (12) - (15). Plots of weighting

function Q(vt) and smoothing function V(t,f) are displayed in

figure 4; the contours drawn are at the exp(-n) = .043 level

relative to the peak value of each function. Dimensionless tilt

= 2parameter r is limited to Irl < 1; also, we define q = (1-r

The smoothing function V(t,f) again has essential extent 2/B

by 2/D in the t,f plane; that is, V(t,f) is substantially zero

for Itl > I/B or Ifl > l/D. However, the effective area Atf

(inside the l/e relative contour level) of V(t,f) is now q/(BD),

which can be considerably less than l/(BD) for Irl near 1, that

is, when q << 1. Weighting function '(V,r) now has essential

extent 2B/q by 2D/q in the V,T plane; its effective area A V is

BD/q, which is the reciprocal of that for smoothing function

V(t,f): A V = 1/Atf. Values of Atf of the order of 1/3 to 1/4

are desired for smoothing purposes; then, A V - 3 to 4.

Although effective area Atf can be considerably less than

1/(BD), the smearing caused by double convolution (19) still

leads to a smoothed WDF W(t,f) which occupies the same region

indicated in figure 3. The extents of the four GTFRs are exactly

the same as figure 3, except that the limits on v and T are now

minfF,B/qI and min(T,D/qI, respectively; q = (1-r2 ) . (24)

14
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T/D

q = (1-r2 1/q

Atf = BD/q

-1/q -11 1/q

exp(-n)

level -0.

-1/q

Df

q = ( -2 )1 - --

A tf =q/(BD) q V(t,f)

Bt

-1 -q qi

exp (-n ) -q

level

Figure 4. Tilted Smoothing Functions
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CHOI-WILLIAMS KERNEL

Another example of the smoothing operations in (8) - (11) is

furnished by [5]:

v(v,r) = exp(-v 2r /2 ) , a > 0 , (25)

TEo/Irl exp(-2 a 2 t 2 ) for T 0
v(t,r) = {(t) 222 2 } (26)

6(t) for t =0

V(V,f) = , (27)

6(f) for v = 0

+CD

V(t,f) = 2t a f !- cos(2nvt) exp(- 2a2 f2/V 2) = (28a)

0+

+M

2n 0 a ' cos(2nfr) exp(-n 2 2 t2/T2 ) (28b)

0+

provided that t * 0 and f * 0. Integral (28a) is convergent at

v = 0+ only if f e 0 and is convergent at v = +- oaly if t d 0.

Similarly, (28b) converges at r = 0+ only if t * 0 and converges

at r = +- only if f 0. Also, (28) yields V(0,f) = - for all

finite f, and V(t,0) = for all finite t. This smoothing

function V(t,f) in (28) has an integrable singularity all along

both coordinate axes since (0,0) = ffdtdf V(t,f) = 1 is finite.

Probably V(t,f) has a logarithmic singularity as tf - 0. Letting

r = ItIx in (28b), V(t,f) is seen to be a function only of Itfl.

16
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Because of these singularities, the actual numerical

calculation of the GTFR W(t,f), by means of double convolution

(19), appears very unattractive; rather, the Fourier transform in

(19) is the recommended procedure. The delta functions in the

bottom lines of (26) and (27) mean that

R(t,0) = R(t,0) and #(0,f) = 0(0,f) . (29)

These results follow directly from (18) and (17), respectively.

Therefore, when computing GTFR R(t,r) by means of the Fourier

transform in (18), the slice for r = 0 need not be done at all,

but rather (29) should be employed. That is,

jf dv exp(i2nvt) X(v,t) exp(-v r a for T 0 0
R(t,r) = . (30)

R(t,O) = ls(t)I 2  for r =0

Finally, GTFR W(t,f) is obtained by Fourier transform (19).

Numerous other possibilities for kernel (VT) are listed in [1].

PRODUCT KERNELS

The weighting in (25) is an example of a product kernel, that

is, the weighting takes the form

(v,r) = g(VT) , g(0) = 1 . (30a)

In order that smoothing function V(t,f) be real for all t,f, it

is necessary that v*(-v,-t) = Z(v,T) for all V,r, which in turn

requires that g(x) be real for all arguments x. Now define

17
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G(y) = { dx exp(-i2nxy) g(x) (30b)

Then G(-y) = G*(y) for all y.

With the help of these functions and properties, we find that

the resL of the two-dimensional smoothing functions are given by

G for v 0 0

V(,f) = { (30c)

6(f) for v = 0J

G[ for T
v(t,t) = , (30d)

6(t) for r =OJ

V(tf)= 2 Re q y exp(i2ntfy) G .I (30e)' Y )
0

This last result shows that the smoothing function V(t,f) for a

product kernel is always a function of the product tf, and is

never a function of t or f separately.

The last integral on y converges at y = 0 if G(-) = 0.

Alternatively, it converges at y = 0 for G(-) 0 0 if tf * 0. And

the integral converges at y = if tf - 0.

On the other hand, if tf 0, then the last integral on y

above is infinite if G(O) ; 0; that is, V(t,f) = for tf = 0,

which corresponds to both coordinate axes t = 0 and f = 0. The

example in (25) is of this nature and corresponds to the special

case of g(x) = exp(-x 2 /o 2 ) and G(y) = n%0 exp(-n 2 y2 a2), for

which G(0) = 0a * 0.
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DISCRETE-TIME CONSIDERATIONS

Up to this point, it has been assumed that s(t) is available

for continuous time t. Now, we address the case where the only

knowledge of s(t) is through samples taken at multiples of time

increment A. The proper treatment of these samples ls(KA)I, in

order to obtain an unaliased WDF W(t,f), was determined in [2];

namely, it was found necessary to take A < 1/F, where bandwidth F

is specified in (3). Also, when an efficient FFT procedure for

evaluating discrete spectral values of S(f) was employed, it was

found necessary to choose FFT size N > 2T/A, where duration T is

specified in (2). The following extension is aimed at obtaining

an unaliased version of smoothed WDF W(t,f) defined in (19). The

reader must be familiar with the procedures presented in [2].

EVALUATION OF MODIFIED CAF X(v,t)

As in [2; (69)], define

A T exp(-i2nfAk) s(kA) for jfj < (2A)-1
S(f) = otherwise (31)

where the sum on k is over all nonzero summand values. Then

since A < 1/F, we have S(f) = S(f) for all f; furthermore, S(f)

can be computed at any f values of interest, directly from the

available samples {s(kA)). Therefore, from (16), (7b), and (5),

the modified continuous CAF is
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x(v,r) = (v,t) { df exp(i2nfr) *(v,f) = (32a)

= 9(v,t) df exp(i2nfT) S(f+ v) S*(f- ) (32b)

Now, in practice, S(f) must be computed at a discrete set of

points; in particular, when we choose frequency increment

Af = 1/(NA), where N is arbitrary, we obtain

S( ) = AZ exp(-i2nnk/N) s(kA) for Inl < N(33)

There is no need to consider n beyond the ±N/2 range, because the

argument f of S(f) then covers the ±1/(2L) frequency range, which

is greater than the ±F/2 range of S(f) in (3). We adopt, as our

approximation to desired function (32), the trapezoidal form

Xa (v,r) 1 exp i2ut)) (

for all v,t . (34)

Now let infinite impulse train

6 b(x) = T 6(x - kb) . (35)
k

Then, using Af = 1/(NA), (34) can be expressed and developed as

Xa (V,t) = f() df exp(i2nfi) I(v,f) Af 6A f(f) =

~'', r fx(\'r (B S(r - iNA)J

= (,r) Z X(v,r - jNA) for all v,t . (36)
J
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The sum on j in (36) represents sets of aliasing lobes spaced by

multiples of NA on the T axis. From figure 1, since the T extent

of X(v,r) is ±T, the first aliasing lobe in (36) for j = 1

extends down to r = NA - T. In order that this lobe not overlap

the desired main lobe, j = 0, we must have T < NA - T, or

2T A 1A f NA 2T (37)

This last constraint on Af is consistent with the fact that the r

extents of R(t,r) and X(v,r) are ±T; see figure 1 and

[2; page A-4].

Equation (37) states that the size of the FFT in (33) must be

at least equal to twice the number of waveform samples taken at

increment A in duration T of s(t). When this selection is made,

(36) and (16) yield

Xa (v,r) = X(,r) x(v,t) = X(v,T) for Irl < NA/2 , all v . (38)

That is, approximate GTFR Xa(V,T), defined by the sum in (34), is

equal to the desired GTFR X(v,r) within a strip in the v,t plane.

Now, in order to convert (34) to a form where we can use the

spectrum calculations (33), we limit v to the values 2n/(NA):

X(' = vi'r) j =c exp(i21N- At S ) * n)

for jl N all n. (39)

We have dropped the subscript a on X(v,r), by virtue of (38).

The v increment in (39) is A = 2/(NA), which is less than 1/T
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according to (37); this increment is fine enough to track

variations of X(v,r) in v, since the t extent of the TFRs in

figure 2 is ±T/2.

Finally, in order to manipulate (39) into an FFT form, we

restrict the T-value calculations to the set

X( ,mA = v(inmA) -1 exp(i2njm/N) S(1+n) S* (TL)

JXkAfo kmA NA NAN

for Imi < all n (40)

Actually, since the IvI extent of X(v,r) is min{F,B/ql according

to (24), we only need to consider

21n' < min(FB/ql that is, Inl < N min[FABA/qI . (41)
NA 2

But since we always have FA < 1, then Inl < N/2 will always

suffice. Thus, m and n in (40) can be limited to ±N/2. The r

increment in (40) is A. = A < 1/F, which is consistent with the

fact that the f extents of I(v,f) and W(t,f) are ±F/2; see

figure 1 and [2; page A-4].

We have shown here that if A < 1/F and N > 2T/", then an

unaliased version of GTFR X(v,r) is available and that this

version can be efficiently computed by (40). These conditions

are the same as those derived in [2; appendix D]. The

multiplication of X(v,t) by weighting Q(vt) in (16) or (32) to

obtain X(v,r) has no effect on aliasing in the v,r plane; this is

an obvious result in retrospect.
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EVALUATION OF MODIFIED SCF #(v,f)

The modified SCF #(v,f) is given by (17) as the Fourier

transform of X(V,r). Since X(V,T) will only be available at

increment AT = A, as given by (40), we adopt as our approximation

the trapezoidal form

a (Vf) = A Z exp(-i2nfmA) X(v,mA) =
m

= f dt exp(-i2nfr) X(v,t) A 6A(T) =

f
(v,f) * 61/f = 4Vf - for all v,f . (42)

m

The first aliasing lobe for m = 1 is centered at f = 1/A.

The f extent of GTFR #(v,f) is ±( F + 1/D), as seen in figure

3. In order that aliasing be insignificant in (42), we must have

F + 1/D < 1/(2A); that is, time sampling increment A must

satisfy the constraint

1
A < 1 2 "(43)

F + --

This is tighter than the original constraint A < 1/F, which was

sufficient for reconstruction of s(t) and the unmodified TFRs

such as X(V,r) and W(t,f). So if we anticipate doing some

smoothing of the TFRs, sampling with a time increment A

satisfying (43) must be undertaken in order to avoid aliasing.

In this case, we have

a(v,f) = #(v,f) for Ifj < 1/(2A) , all v . (44)
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As for the actual evaluation of GTFR *(v,r), we use (42) and

(44) to get

V, = A exp(-i2njm/N) X(v,mA) for IJj < , all v . (45)
m

Finally, ir .rder to use the available quantities in (40), we

restrict the calculation to the values

= A 1: exp(-i2njm/N) X (,mA)

NN NA N
m

for InI < j l < N (46)

This procedure in (46) yields unaliased samples of the GTFR

f(v,r) when (43) is satisfied. It utilizes FFT operations,

applied to the GTFR X(v,r), which is available by the FFT

prescription in (40). The ranges of integers n and j in (46) are

sufficient to cover the range ±1/A and ±1/(2A) in v and f,

respectively. But since 1/A > F + 2/D by (43), the ranges

±(F + 2/D) and ±(F/2 + I/D) in v and f, respectively, are

adequate to fully cover the extent of GTFR f(v,f); see figure 3.

The increment Af = I/(NA) in (46) is fine enough to track f(v,f)

in f, since l/(NA) < 1/(2T) by (37), while the T extent of the

CTFRs in figure 3 is always less than ±T.
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EVALUATION OF MODIFIED WDF W(t,f)

The modified WDF W(t,f) was given by (19) as the Fourier

transform of R(t,r). However, in analogy to the two alternatives

in (6), there is also the form

W(t,f) = dv exp(i2nvt) *(v,f) (47)

Since t(v,f) will only be available at increment A = 2i(NA), as

given by (46), we utilize the following trapezoidal approximation

to (47):

a(tf) = N2 exp i2n2-t '(,f) =

n

= F dv exp(i2nvt) 4(v,f) A 6' (v) =

t
W(t,f) 6NA/2(t) = Wit - nL,f) for all t,f . (48)

n

The first aliasing lobe for n = 1 is centered at t = NA/2.

The t extent of GTFR W(t,f) is ±( T + 1/B), as seen in figure

3. In order that aliasing be insignificant in (48), we must have

T + i/B < NA/4; that is, the FFT size N must satisfy

2T 4N > - + B- "(49)
a BA

This is more stringent than original constraint (37), which

sufficed for the unmodified TFRs. Again, an unaliased smoothed

WDF can only be achieved if sampling increment A is smaller and

if the FFT size N is larger, the exact amounts depending on the
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degree of smoothing desired; see figure 2 in this regard. When

(49) is satisfied, we have

W a(t,f) = W(t,f) for Itl < NA/4 , all f (50)

The combination of (50), (48), and (46) now yields

t,-) 2 T exp i2rtZt 2n (2,-)

n

for Itl < < (51)

Finally, to convert (51) to an FFT, we restrict the t values to

W[2,N- -j) 2 exp(i2nnm/N) (N'NA)

n

for ml < <  (52)Ii < 2f (52

Again, N-point FFTs will realize the desired unaliased smoothed

WDF W(t,f) at selected points that cover its full extent, with

time and frequency increments that track the fastest possible

variations of this function. In particular, (52) yields

At = A/2 < 1/(2F) and Af = 1/(NA) < 1/(2T). But since the
tf

v extent of *(v,f) in figure 3 is never larger .han ±F, while the

i extent of R(t,r) is never larger than ±T, these increments are

certainly fine enough to track the variations; also see

[2; appendix A]. The ranges of integers m and j in (52) cover

interval ±NA/4 in t and bandwidth ±1/(2A) in f. But since

A,,/4 > T/2 + I/B and 1/(2A) > F/2 + I/D according to (49) and

(43), respectively, these t and f ranges cover the full extent

of smoothed WDF W(t,f) in figure 3.
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SUMMARY

Calculation of the modified CAF X(V,t) can be done without

changing the requirements on sampling increment a and FFT size N.

However, in order to compute the modified SCF #(v,f), the

sampling increment A must be taken at a smaller value, in order

to avoid aliasing in frequency f. Finally, in order to compute

the modified WDF W(t,f), both the sampling increment a must be

smaller and the FFT size N must be larger, in order to avoid

aliasing in time t and frequency f. If there is interest in

calculation of the modified TCF R(t,r), it can be shown that

aliasing will be controlled when FFT size N satisfies (49); the

constraint (43) on L need not be met, insofar as calculation of

R(t,r) is concerned, although we still need A < 1/F. It is only

when the final transformation into the t,f plane is accomplished

that both constraints (43) and (49) must be met.

If integrals of products of WDFs or CAFs are of interest [6],

the rules on sampling rate and FFT size given here should suffice

to get accurate numerical results. The aliasing lobes have been

kept out of the regions of interest, thereby minimizing possible

interference effects.

A summary of the operations that must be undertaken on

available time data samples fs(kA)J follows: compute the

spectral quantities S in (33); use these in (40) to get samples

of the weighted CAF X; employ (46) to evaluate the modified SCF

#; and use (52) to determine the smoothed WDF W. All of these

expressions use N-point FFTs.
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Since the number of substantial samples of s(t) is T/A

according to (2), the FFT size N in (33) is at least twice this

large; see (37) and (49). Thus, approximately half of the N

array locations input to (33) will contain rather small

contributions. If s(t) is sampled well beyond t = ±T/2, say for

Itl > T, these very small values can be "collapsed" into the

available N bins with no loss of accuracy; see [2; page 5].

Candidates for weighting '(vt) to be used in (40) include

(12) or (20) or (25). The values of parameters B, D, r, and a

will have to be made by inspection of CAF X(v,t), which is the

factor multiplying Q(vt) in (40). A check should then be made

of (43) and (49) to ensure that aliasing is not significant.
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